Joule
  • Welcome to Joule's Docs
  • Why Joule?
    • Joule capabilities
  • What is Joule?
    • Key features
    • The tech stack
  • Use case enablement
    • Use case building framework
  • Concepts
    • Core concepts
    • Low code development
    • Unified execution engine
    • Batch and stream processing
    • Continuous metrics
    • Key Joule data types
      • StreamEvent object
      • Contextual data
      • GeoNode
  • Tutorials
    • Getting started
    • Build your first use case
    • Stream sliding window quote analytics
    • Advanced tutorials
      • Custom missing value processor
      • Stateless Bollinger band analytics
      • IoT device control
  • FAQ
  • Glossary
  • Components
    • Pipelines
      • Use case anatomy
      • Data priming
        • Types of import
      • Processing unit
      • Group by
      • Emit computed events
      • Telemetry auditing
    • Processors
      • Common attributes
      • Filters
        • By type
        • By expression
        • Send on delta
        • Remove attributes
        • Drop all events
      • Enrichment
        • Key concepts
          • Anatomy of enrichment DSL
          • Banking example
        • Metrics
        • Dynamic contextual data
          • Caching architecture
        • Static contextual data
      • Transformation
        • Field Tokeniser
        • Obfuscation
          • Encryption
          • Masking
          • Bucketing
          • Redaction
      • Triggers
        • Change Data Capture
        • Business rules
      • Stream join
        • Inner stream joins
        • Outer stream joins
        • Join attributes & policy
      • Event tap
        • Anatomy of a Tap
        • SQL Queries
    • Analytics
      • Analytic tools
        • User defined analytics
          • Streaming analytics example
          • User defined analytics
          • User defined scripts
          • User defined functions
            • Average function library
        • Window analytics
          • Tumbling window
          • Sliding window
          • Aggregate functions
        • Analytic functions
          • Stateful
            • Exponential moving average
            • Rolling Sum
          • Stateless
            • Normalisation
              • Absolute max
              • Min max
              • Standardisation
              • Mean
              • Log
              • Z-Score
            • Scaling
              • Unit scale
              • Robust Scale
            • Statistics
              • Statistic summaries
              • Weighted moving average
              • Simple moving average
              • Count
            • General
              • Euclidean
        • Advanced analytics
          • Geospatial
            • Entity geo tracker
            • Geofence occupancy trigger
            • Geo search
            • IP address resolver
            • Reverse geocoding
            • Spatial Index
          • HyperLogLog
          • Distinct counter
      • ML inferencing
        • Feature engineering
          • Scripting
          • Scaling
          • Transform
        • Online predictive analytics
        • Model audit
        • Model management
      • Metrics engine
        • Create metrics
        • Apply metrics
        • Manage metrics
        • Priming metrics
    • Contextual data
      • Architecture
      • Configuration
      • MinIO S3
      • Apache Geode
    • Connectors
      • Sources
        • Kafka
          • Ingestion
        • RabbitMQ
          • Further RabbitMQ configurations
        • MQTT
          • Topic wildcards
          • Session management
          • Last Will and Testament
        • Rest endpoints
        • MinIO S3
        • File watcher
      • Sinks
        • Kafka
        • RabbitMQ
          • Further configurations
        • MQTT
          • Persistent messaging
          • Last Will and Testament
        • SQL databases
        • InfluxDB
        • MongoDB
        • Geode
        • WebSocket endpoint
        • MinIO S3
        • File transport
        • Slack
        • Email
      • Serialisers
        • Serialisation
          • Custom transform example
          • Formatters
        • Deserialisers
          • Custom parsing example
    • Observability
      • Enabling JMX for Joule
      • Meters
      • Metrics API
  • DEVELOPER GUIDES
    • Setting up developer environment
      • Environment setup
      • Build and deploy
      • Install Joule
        • Install Docker demo environment
        • Install with Docker
        • Install from source
        • Install Joule examples
    • Joulectl CLI
    • API Endpoints
      • Mangement API
        • Use case
        • Pipelines
        • Data connectors
        • Contextual data
      • Data access API
        • Query
        • Upload
        • WebSocket
      • SQL support
    • Builder SDK
      • Connector API
        • Sources
          • StreamEventParser API
        • Sinks
          • CustomTransformer API
      • Processor API
      • Analytics API
        • Create custom metrics
        • Define analytics
        • Windows API
        • SQL queries
      • Transformation API
        • Obfuscation API
        • FieldTokenizer API
      • File processing
      • Data types
        • StreamEvent
        • ReferenceDataObject
        • GeoNode
    • System configuration
      • System properties
  • Deployment strategies
    • Deployment Overview
    • Single Node
    • Cluster
    • GuardianDB
    • Packaging
      • Containers
      • Bare metal
  • Product updates
    • Public Roadmap
    • Release Notes
      • v1.2.0 Join Streams with stateful analytics
      • v1.1.0 Streaming analytics enhancements
      • v1.0.4 Predictive stream processing
      • v1.0.3 Contextual SQL based metrics
    • Change history
Powered by GitBook
On this page
  • Overview
  • Features
  • SQL Support
  • Metrics Engine
  • Dynamic Rest APIs
  • Multi-Language scripting support
  • Parquet import/export
  • Database publisher
  • Documentation

Was this helpful?

  1. Product updates
  2. Release Notes

v1.0.3 Contextual SQL based metrics

Define SQL based metrics to drive advanced use case insights

Previousv1.0.4 Predictive stream processingNextChange history

Last updated 10 months ago

Was this helpful?


Version 1.0.3

Overview

This release brings a number of new features, bug fixes, optimisations and general usability enhancements. The focus of this release has been providing a solid foundation for in-memory SQL support, metrics processing and multi language scripting support.

Features

  • SQL Support

  • Metrics engine

  • Dynamic Rest APIs

  • Multi-Language scripting support

  • Parquet support

  • Database publisher

  • Documentation


SQL Support

  • SQL Tap for event capture and storage

  • Metrics Engine to provide SQL analytics

  • Rest API provides data access and export functions

Metrics Engine

The metrics engine computes SQL-defined metrics using events stored by the SQL Tap and scheduled using a runtime policy.


metrics engine:
  runtime policy:
    frequency: 1
    startup delay: 2
    time unit: MINUTES
​
  foreach metric compute:
    metrics:
      - name: BidMovingAverage
          metric key: symbol
          table definition: standardQuoteAnalyticsStream.BidMovingAverage 
                           (symbol VARCHAR, avg_bid_min FLOAT, 
                            avg_bid_avg FLOAT,avg_bid_max FLOAT)
          query:
            SELECT symbol,
            MIN(bid) AS 'avg_bid_min',
            AVG(bid) AS 'avg_bid_avg',
            MAX(bid) AS 'avg_bid_max'
            FROM standardQuoteAnalyticsStream.quote
            WHERE
            ingestTime >= date_trunc('minutes',now() - INTERVAL 2 MINUTES) AND ingestTime <= date_trunc('minutes',now())
            GROUP BY symbol
            ORDER BY 1;
          truncate on start: true
          compaction policy:
            frequency: 8
            time unit: HOURS

Dynamic Rest APIs

All SQL tables created by a Joule process are accessible through a well-defined Rest API.

Multi-Language scripting support

Parquet import/export

Data can be stored within the Joule process and can be exported as Parquet files for further analytics use cases. Also, Parquet files can be imported into the Joule process to drive user-defined functionality.

initialisation:
  sql import:
    schema: banking
    parquet:
      - 
        table: fxrates
        asView: false
        files: [ 'fxrates.parquet' ]
        drop table: true
        index:
          fields: [ 'ccy' ]
          unique: false

Database publisher

Publisher transport persists processed events to a configured SQL database and table. The insert statement is dynamically generated from an event, attribute names and types need to match the table definition.

This feature is an idea for offline analytics, business reporting, dashboards and process testing.

Documentation

Joule is now shipping with online documentation.

Joule ships with an embedded in-memory modern SQL engine, . This is used to capture events flowing through the processing pipeline along with supporting the metrics engine implementation.

Joule provides a flexible scripting processor implemented using . This enables the developer to integrate code written using Python, Node.JS, R, Javascript and Ruby within a streaming context.

DuckDB
GraalVM