Joule
  • Welcome to Joule's Docs
  • Why Joule?
    • Joule capabilities
  • What is Joule?
    • Key features
    • The tech stack
  • Use case enablement
    • Use case building framework
  • Concepts
    • Core concepts
    • Low code development
    • Unified execution engine
    • Batch and stream processing
    • Continuous metrics
    • Key Joule data types
      • StreamEvent object
      • Contextual data
      • GeoNode
  • Tutorials
    • Getting started
    • Build your first use case
    • Stream sliding window quote analytics
    • Advanced tutorials
      • Custom missing value processor
      • Stateless Bollinger band analytics
      • IoT device control
  • FAQ
  • Glossary
  • Components
    • Pipelines
      • Use case anatomy
      • Data priming
        • Types of import
      • Processing unit
      • Group by
      • Emit computed events
      • Telemetry auditing
    • Processors
      • Common attributes
      • Filters
        • By type
        • By expression
        • Send on delta
        • Remove attributes
        • Drop all events
      • Enrichment
        • Key concepts
          • Anatomy of enrichment DSL
          • Banking example
        • Metrics
        • Dynamic contextual data
          • Caching architecture
        • Static contextual data
      • Transformation
        • Field Tokeniser
        • Obfuscation
          • Encryption
          • Masking
          • Bucketing
          • Redaction
      • Triggers
        • Change Data Capture
        • Business rules
      • Stream join
        • Inner stream joins
        • Outer stream joins
        • Join attributes & policy
      • Event tap
        • Anatomy of a Tap
        • SQL Queries
    • Analytics
      • Analytic tools
        • User defined analytics
          • Streaming analytics example
          • User defined analytics
          • User defined scripts
          • User defined functions
            • Average function library
        • Window analytics
          • Tumbling window
          • Sliding window
          • Aggregate functions
        • Analytic functions
          • Stateful
            • Exponential moving average
            • Rolling Sum
          • Stateless
            • Normalisation
              • Absolute max
              • Min max
              • Standardisation
              • Mean
              • Log
              • Z-Score
            • Scaling
              • Unit scale
              • Robust Scale
            • Statistics
              • Statistic summaries
              • Weighted moving average
              • Simple moving average
              • Count
            • General
              • Euclidean
        • Advanced analytics
          • Geospatial
            • Entity geo tracker
            • Geofence occupancy trigger
            • Geo search
            • IP address resolver
            • Reverse geocoding
            • Spatial Index
          • HyperLogLog
          • Distinct counter
      • ML inferencing
        • Feature engineering
          • Scripting
          • Scaling
          • Transform
        • Online predictive analytics
        • Model audit
        • Model management
      • Metrics engine
        • Create metrics
        • Apply metrics
        • Manage metrics
        • Priming metrics
    • Contextual data
      • Architecture
      • Configuration
      • MinIO S3
      • Apache Geode
    • Connectors
      • Sources
        • Kafka
          • Ingestion
        • RabbitMQ
          • Further RabbitMQ configurations
        • MQTT
          • Topic wildcards
          • Session management
          • Last Will and Testament
        • Rest endpoints
        • MinIO S3
        • File watcher
      • Sinks
        • Kafka
        • RabbitMQ
          • Further configurations
        • MQTT
          • Persistent messaging
          • Last Will and Testament
        • SQL databases
        • InfluxDB
        • MongoDB
        • Geode
        • WebSocket endpoint
        • MinIO S3
        • File transport
        • Slack
        • Email
      • Serialisers
        • Serialisation
          • Custom transform example
          • Formatters
        • Deserialisers
          • Custom parsing example
    • Observability
      • Enabling JMX for Joule
      • Meters
      • Metrics API
  • DEVELOPER GUIDES
    • Setting up developer environment
      • Environment setup
      • Build and deploy
      • Install Joule
        • Install Docker demo environment
        • Install with Docker
        • Install from source
        • Install Joule examples
    • Joulectl CLI
    • API Endpoints
      • Mangement API
        • Use case
        • Pipelines
        • Data connectors
        • Contextual data
      • Data access API
        • Query
        • Upload
        • WebSocket
      • SQL support
    • Builder SDK
      • Connector API
        • Sources
          • StreamEventParser API
        • Sinks
          • CustomTransformer API
      • Processor API
      • Analytics API
        • Create custom metrics
        • Define analytics
        • Windows API
        • SQL queries
      • Transformation API
        • Obfuscation API
        • FieldTokenizer API
      • File processing
      • Data types
        • StreamEvent
        • ReferenceDataObject
        • GeoNode
    • System configuration
      • System properties
  • Deployment strategies
    • Deployment Overview
    • Single Node
    • Cluster
    • GuardianDB
    • Packaging
      • Containers
      • Bare metal
  • Product updates
    • Public Roadmap
    • Release Notes
      • v1.2.0 Join Streams with stateful analytics
      • v1.1.0 Streaming analytics enhancements
      • v1.0.4 Predictive stream processing
      • v1.0.3 Contextual SQL based metrics
    • Change history
Powered by GitBook
On this page
  • Overview
  • Use cases
  • Key features
  • Example
  • Available metric engine options

Was this helpful?

  1. Components
  2. Analytics

Metrics engine

In-memory SQL compliant metrics engine for advance analytics solutions

Overview

Staying informed with near real-time business metrics allows organisations to make swift, decisive actions that enhance success. Joule’s SQL-compliant metrics engine facilitates this by generating real-time analytics and storing metrics through SQL expressions, supporting KPIs, alerting and predictive insights.

By providing a framework for proactive management, Joule enables organisations to focus on clear, measurable goals and make data-driven decisions. The engine computes metrics using event data and runtime policies, empowering users to analyse and react to data effectively as it streams.

Use cases

Here are some use cases of how metrics it can be applied in stream processing:

  1. Business metrics monitoring Track intra-day business metrics such as number of orders placed in an hour.

  2. Proactive service failure alerting Track key failure indicators to raise early failure alerting.

  3. Data quality metrics Monitor data quality in near real-time.

  4. ML feature engineering Use calculated metrics as feature vector components.

  5. KPI analytics Apply metrics to form intra-day KPIs. For example Conversion rate uses the number of conversions and total audience are running metrics to form the result.

Key features

  • ANSI SQL compliant metrics calculation definition

  • Apply calculated metrics within processors

  • Pre-computed metrics import

  • Runtime policy

  • Metric management

Example

The following example computes a single family of metrics BidMovingAverage at set time intervals and saved to an in-memory standardQuoteAnalyticsStream.BidMovingAverage SQL table.

The emit definition performs a query lookup against the table and returns the avg_bid_max for each matching symbol.

processing unit:
  metrics engine:
    runtime policy:
      frequency: 1
      startup delay: 2
      time unit: MINUTES

    foreach metric compute:
      metrics:
        - name: BidMovingAverage
          metric key: symbol
          table definition: standardQuoteAnalyticsStream.BidMovingAverage 
          (symbol VARCHAR, avg_bid_min FLOAT, avg_bid_avg FLOAT,avg_bid_max FLOAT)
          query:
            SELECT symbol,
            MIN(bid) AS 'avg_bid_min',
            AVG(bid) AS 'avg_bid_avg',
            MAX(bid) AS 'avg_bid_max'
            FROM standardQuoteAnalyticsStream.quote
            WHERE
            ingestTime >= date_trunc('minutes',now() - INTERVAL 2 MINUTES) AND 
            ingestTime <= date_trunc('minutes',now())
            GROUP BY symbol
            ORDER BY 1;
          truncate on start: true
          compaction policy:
            frequency: 8
            time unit: HOURS

emit:
  select: "symbol, BidMovingAverage.avg_bid_max;WHERE symbol=${symbol} 'avg_bid_max'"

group by:
  - symbol

Available metric engine options

In the following articles you can further explore how to interact with the metrics engine.

PreviousModel managementNextCreate metrics

Last updated 6 months ago

Was this helpful?

Powered by the In-memory column database

DuckDB

Create a metric

Define time based metrics using captured events

Apply metrics

Apply metrics within stream processing functions

Manage metrics

Apply runtime compaction policies on calculated metrics

Priming metrics

Prime metrics with existing values on process startup