Joule
  • Welcome to Joule's Docs
  • Why Joule?
    • Joule capabilities
  • What is Joule?
    • Key features
    • The tech stack
  • Use case enablement
    • Use case building framework
  • Concepts
    • Core concepts
    • Low code development
    • Unified execution engine
    • Batch and stream processing
    • Continuous metrics
    • Key Joule data types
      • StreamEvent object
      • Contextual data
      • GeoNode
  • Tutorials
    • Getting started
    • Build your first use case
    • Stream sliding window quote analytics
    • Advanced tutorials
      • Custom missing value processor
      • Stateless Bollinger band analytics
      • IoT device control
  • FAQ
  • Glossary
  • Components
    • Pipelines
      • Use case anatomy
      • Data priming
        • Types of import
      • Processing unit
      • Group by
      • Emit computed events
      • Telemetry auditing
    • Processors
      • Common attributes
      • Filters
        • By type
        • By expression
        • Send on delta
        • Remove attributes
        • Drop all events
      • Enrichment
        • Key concepts
          • Anatomy of enrichment DSL
          • Banking example
        • Metrics
        • Dynamic contextual data
          • Caching architecture
        • Static contextual data
      • Transformation
        • Field Tokeniser
        • Obfuscation
          • Encryption
          • Masking
          • Bucketing
          • Redaction
      • Triggers
        • Change Data Capture
        • Business rules
      • Stream join
        • Inner stream joins
        • Outer stream joins
        • Join attributes & policy
      • Event tap
        • Anatomy of a Tap
        • SQL Queries
    • Analytics
      • Analytic tools
        • User defined analytics
          • Streaming analytics example
          • User defined analytics
          • User defined scripts
          • User defined functions
            • Average function library
        • Window analytics
          • Tumbling window
          • Sliding window
          • Aggregate functions
        • Analytic functions
          • Stateful
            • Exponential moving average
            • Rolling Sum
          • Stateless
            • Normalisation
              • Absolute max
              • Min max
              • Standardisation
              • Mean
              • Log
              • Z-Score
            • Scaling
              • Unit scale
              • Robust Scale
            • Statistics
              • Statistic summaries
              • Weighted moving average
              • Simple moving average
              • Count
            • General
              • Euclidean
        • Advanced analytics
          • Geospatial
            • Entity geo tracker
            • Geofence occupancy trigger
            • Geo search
            • IP address resolver
            • Reverse geocoding
            • Spatial Index
          • HyperLogLog
          • Distinct counter
      • ML inferencing
        • Feature engineering
          • Scripting
          • Scaling
          • Transform
        • Online predictive analytics
        • Model audit
        • Model management
      • Metrics engine
        • Create metrics
        • Apply metrics
        • Manage metrics
        • Priming metrics
    • Contextual data
      • Architecture
      • Configuration
      • MinIO S3
      • Apache Geode
    • Connectors
      • Sources
        • Kafka
          • Ingestion
        • RabbitMQ
          • Further RabbitMQ configurations
        • MQTT
          • Topic wildcards
          • Session management
          • Last Will and Testament
        • Rest endpoints
        • MinIO S3
        • File watcher
      • Sinks
        • Kafka
        • RabbitMQ
          • Further configurations
        • MQTT
          • Persistent messaging
          • Last Will and Testament
        • SQL databases
        • InfluxDB
        • MongoDB
        • Geode
        • WebSocket endpoint
        • MinIO S3
        • File transport
        • Slack
        • Email
      • Serialisers
        • Serialisation
          • Custom transform example
          • Formatters
        • Deserialisers
          • Custom parsing example
    • Observability
      • Enabling JMX for Joule
      • Meters
      • Metrics API
  • DEVELOPER GUIDES
    • Setting up developer environment
      • Environment setup
      • Build and deploy
      • Install Joule
        • Install Docker demo environment
        • Install with Docker
        • Install from source
        • Install Joule examples
    • Joulectl CLI
    • API Endpoints
      • Mangement API
        • Use case
        • Pipelines
        • Data connectors
        • Contextual data
      • Data access API
        • Query
        • Upload
        • WebSocket
      • SQL support
    • Builder SDK
      • Connector API
        • Sources
          • StreamEventParser API
        • Sinks
          • CustomTransformer API
      • Processor API
      • Analytics API
        • Create custom metrics
        • Define analytics
        • Windows API
        • SQL queries
      • Transformation API
        • Obfuscation API
        • FieldTokenizer API
      • File processing
      • Data types
        • StreamEvent
        • ReferenceDataObject
        • GeoNode
    • System configuration
      • System properties
  • Deployment strategies
    • Deployment Overview
    • Single Node
    • Cluster
    • GuardianDB
    • Packaging
      • Containers
      • Bare metal
  • Product updates
    • Public Roadmap
    • Release Notes
      • v1.2.0 Join Streams with stateful analytics
      • v1.1.0 Streaming analytics enhancements
      • v1.0.4 Predictive stream processing
      • v1.0.3 Contextual SQL based metrics
    • Change history
Powered by GitBook
On this page
  • Development steps
  • API
  • Development steps
  • Explaining each step
  • Step 1: Implement AnalyticsFunction interface
  • Step 2: Build, test and package
  • Step 3: Deploy
  • Step 4: Add to a use case DSL

Was this helpful?

  1. DEVELOPER GUIDES
  2. Builder SDK
  3. Analytics API

Define analytics

Create custom analytic functions for window processing that drive advanced analytic use cases

PreviousCreate custom metricsNextWindows API

Last updated 6 months ago

Was this helpful?

Pre-computed metrics generated by the can be used within a custom processing component. For example, events could be filtered by user-defined metrics using time intervals, scoring models use metrics as part of the input feature space or build KPIs that combine metrics with event data.

Development steps

API

The below API is provided for developers to implement.

public abstract class AnalyticsFunction<T> {

    protected Logger logger;
    protected Properties parameters;

    public AnalyticsFunction() {
        logger = LoggerFactory.getLogger(this.getClass().getName());
    }

    /**
     * Set function parameters
     *
     * @param parameters
     */
    @JsonProperty(value = "parameters")
    public void setParameters(Properties parameters) {
        this.parameters = parameters;
    }


    /**
     * Referenceable function ID for use in projections and window processing
     *
     * @return name of function as String
     */
    public abstract String getVariablePostFixID();

    /**
     * AnalyticDefinition function to compute
     *
     * @param values to use in the computation
     * @param previousValue computed
     * @param context state                     
     * @return computed result
     */
    public T compute(Number[] values, Number previousValue, Context context) {
        return null;
    }

    /**
     * 
     * @param column raw values to use in the computation
     * @param previousValue computed
     * @param context state
     * @return
     */
    public T compute(NumberColumn column, Number previousValue, Context context) {
        return null;
    }

Development steps

  1. Implement AnalyticsFunction interface

  2. Validate and test

  3. Deploy

  4. Add to a use case DSL

Explaining each step

Step 1: Implement AnalyticsFunction interface

Step 2: Build, test and package

The template project provides basic JUnit test to validate DSL. The project will execute these tests during the gradle build cycle and deploy to your local maven repository.

gradle build publishToMavenLocal

Step 3: Deploy

cp build/libs/<your-connector>.jar <location>/userlibs

Step 4: Add to a use case DSL

Now the jar is created and deployed the use case can use the implementation within the DSL definition file.

Example

processing unit:
  pipeline:
    - filter:
      expression: "symbol == 'CVCO'"
    - sliding window analytics:
        function: com.fractalworks.examples.banking.analytics.BollingerBands
        windowSize: 5
        fields: [ ask ]
        parameters:
          deviations: 2

See the

Once your package has been successfully created you are ready to deploy to a Joule project. The resulting jar artefact needs to be placed in to the userlibs directory in your Joule projects directory. See provided examples for further directions.

Metrics Engine
Bollinger bands example
documentation