Joule
  • Welcome to Joule's Docs
  • Why Joule?
    • Joule capabilities
  • What is Joule?
    • Key features
    • The tech stack
  • Use case enablement
    • Use case building framework
  • Concepts
    • Core concepts
    • Low code development
    • Unified execution engine
    • Batch and stream processing
    • Continuous metrics
    • Key Joule data types
      • StreamEvent object
      • Contextual data
      • GeoNode
  • Tutorials
    • Getting started
    • Build your first use case
    • Stream sliding window quote analytics
    • Advanced tutorials
      • Custom missing value processor
      • Stateless Bollinger band analytics
      • IoT device control
  • FAQ
  • Glossary
  • Components
    • Pipelines
      • Use case anatomy
      • Data priming
        • Types of import
      • Processing unit
      • Group by
      • Emit computed events
      • Telemetry auditing
    • Processors
      • Common attributes
      • Filters
        • By type
        • By expression
        • Send on delta
        • Remove attributes
        • Drop all events
      • Enrichment
        • Key concepts
          • Anatomy of enrichment DSL
          • Banking example
        • Metrics
        • Dynamic contextual data
          • Caching architecture
        • Static contextual data
      • Transformation
        • Field Tokeniser
        • Obfuscation
          • Encryption
          • Masking
          • Bucketing
          • Redaction
      • Triggers
        • Change Data Capture
        • Business rules
      • Stream join
        • Inner stream joins
        • Outer stream joins
        • Join attributes & policy
      • Event tap
        • Anatomy of a Tap
        • SQL Queries
    • Analytics
      • Analytic tools
        • User defined analytics
          • Streaming analytics example
          • User defined analytics
          • User defined scripts
          • User defined functions
            • Average function library
        • Window analytics
          • Tumbling window
          • Sliding window
          • Aggregate functions
        • Analytic functions
          • Stateful
            • Exponential moving average
            • Rolling Sum
          • Stateless
            • Normalisation
              • Absolute max
              • Min max
              • Standardisation
              • Mean
              • Log
              • Z-Score
            • Scaling
              • Unit scale
              • Robust Scale
            • Statistics
              • Statistic summaries
              • Weighted moving average
              • Simple moving average
              • Count
            • General
              • Euclidean
        • Advanced analytics
          • Geospatial
            • Entity geo tracker
            • Geofence occupancy trigger
            • Geo search
            • IP address resolver
            • Reverse geocoding
            • Spatial Index
          • HyperLogLog
          • Distinct counter
      • ML inferencing
        • Feature engineering
          • Scripting
          • Scaling
          • Transform
        • Online predictive analytics
        • Model audit
        • Model management
      • Metrics engine
        • Create metrics
        • Apply metrics
        • Manage metrics
        • Priming metrics
    • Contextual data
      • Architecture
      • Configuration
      • MinIO S3
      • Apache Geode
    • Connectors
      • Sources
        • Kafka
          • Ingestion
        • RabbitMQ
          • Further RabbitMQ configurations
        • MQTT
          • Topic wildcards
          • Session management
          • Last Will and Testament
        • Rest endpoints
        • MinIO S3
        • File watcher
      • Sinks
        • Kafka
        • RabbitMQ
          • Further configurations
        • MQTT
          • Persistent messaging
          • Last Will and Testament
        • SQL databases
        • InfluxDB
        • MongoDB
        • Geode
        • WebSocket endpoint
        • MinIO S3
        • File transport
        • Slack
        • Email
      • Serialisers
        • Serialisation
          • Custom transform example
          • Formatters
        • Deserialisers
          • Custom parsing example
    • Observability
      • Enabling JMX for Joule
      • Meters
      • Metrics API
  • DEVELOPER GUIDES
    • Setting up developer environment
      • Environment setup
      • Build and deploy
      • Install Joule
        • Install Docker demo environment
        • Install with Docker
        • Install from source
        • Install Joule examples
    • Joulectl CLI
    • API Endpoints
      • Mangement API
        • Use case
        • Pipelines
        • Data connectors
        • Contextual data
      • Data access API
        • Query
        • Upload
        • WebSocket
      • SQL support
    • Builder SDK
      • Connector API
        • Sources
          • StreamEventParser API
        • Sinks
          • CustomTransformer API
      • Processor API
      • Analytics API
        • Create custom metrics
        • Define analytics
        • Windows API
        • SQL queries
      • Transformation API
        • Obfuscation API
        • FieldTokenizer API
      • File processing
      • Data types
        • StreamEvent
        • ReferenceDataObject
        • GeoNode
    • System configuration
      • System properties
  • Deployment strategies
    • Deployment Overview
    • Single Node
    • Cluster
    • GuardianDB
    • Packaging
      • Containers
      • Bare metal
  • Product updates
    • Public Roadmap
    • Release Notes
      • v1.2.0 Join Streams with stateful analytics
      • v1.1.0 Streaming analytics enhancements
      • v1.0.4 Predictive stream processing
      • v1.0.3 Contextual SQL based metrics
    • Change history
Powered by GitBook
On this page
  • Learn what it is
  • Package location
  • Class Definition
  • Constructors
  • Key Methods
  • Get coordinates
  • Get entity unique key
  • Get entity
  • Example

Was this helpful?

  1. DEVELOPER GUIDES
  2. Builder SDK
  3. Data types

GeoNode

Geospatial data structure for location-based spatial entity analysis

PreviousReferenceDataObjectNextSystem configuration

Last updated 6 months ago

Was this helpful?

Learn what it is

Package location

com.fractalworks.streams.processors.geospatial.structures

Class Definition

class GeoNode<T extends ReferenceData> implements Coordinates, ReferenceData

Constructors

// Default constructor
public GeoNode()

// Create a node with location details and add entity later
public GeoNode(double latitude, double longitude)

// Create a node with location details and a reference data type
public GeoNode(double latitude, double longitude, T entity)

Key Methods

Get coordinates

Tuple<Double, Double> getCoordinates();

Get entity unique key

Object getKey() 

Get entity

T getValue()

Example

The example demonstrates using the GeoNode class to store and query geospatial data.

This example demonstrates how to associate spatial data with entities and efficiently query nearby locations.

  1. Friend class A Friend object stores details (ID, name) of a person.

  2. GeoNode instances Each GeoNode<Friend> links a Friend to specific geographical coordinates (latitude, longitude).

  3. QuadTree The GeoNode instances are added to a QuadTree, which indexes the locations for efficient querying.

  4. GeoFence A GeoFence is created around a specific location with a radius (2 units).

  5. Querying The QuadTree is queried for GeoNode objects within the GeoFence, returning nearby friends.

  6. Display results The nearby friends are printed to the console.

class Friend implements ReferenceData {
        Integer id;
        String name;
    // Implementation
}

Friend bart = new Friend(1, "bart");
Friend billy = new Friend(2, "billy");
Friend cumin = new Friend(3, "cumin");
Friend john = new Friend(4, "john");
Friend stacey = new Friend(5, "stacey");
Friend bambi = new Friend(6, "bambi");
Friend gazza = new Friend(7, "gazza");
Friend kevin = new Friend(8, "kevin");
Friend lora = new Friend(9, "lora");
Friend rodney = new Friend(10, "rodney");
Friend arkan = new Friend(11, "arkan");
    
GeoNode<Friend>[] friendlocations = new GeoNode[]{
    new GeoNode<>(51.456821f, -0.164746f, bart),
    new GeoNode<>(51.456821f, -0.164746f, billy),
    new GeoNode<>(51.457018f, -0.1622072f, cumin),
    new GeoNode<>(51.457018f, -0.1622072f, john),
    new GeoNode<>(51.467766f, -0.2987533f, stacey),
    new GeoNode<>(51.467766f, -0.2987533f, bambi),
    new GeoNode<>(51.467766f, -0.2987533f, gazza),
    new GeoNode<>(51.457018f, -0.1622072f, kevin),
    new GeoNode<>(51.457018f, -0.1622072f, lora),
    new GeoNode<>(51.467766f, -0.2987533f, rodney),
    new GeoNode<>(51.456821f, -0.164746f, arkan)
};

// Add friend locations to search tree
QuadTree<GeoNode<Friend>> friendsTree = new QuadTree<>(-180f, -90f, 360, 64800);
Arrays.stream(peoplePoints).forEach(friendsTree::insert);

// Perform a search of entites within a geofence
GeoFence currentLocation = new GeoFence(51.456821f, -0.164746f, 2);
Collection<GeoNode<Friend>> friendsNearby = friendsTree.query(currentLocation);
friendsNearby.forEach(System.out::println);
GeoNode