Joule
  • Welcome to Joule's Docs
  • Why Joule?
    • Joule capabilities
  • What is Joule?
    • Key features
    • The tech stack
  • Use case enablement
    • Use case building framework
  • Concepts
    • Core concepts
    • Low code development
    • Unified execution engine
    • Batch and stream processing
    • Continuous metrics
    • Key Joule data types
      • StreamEvent object
      • Contextual data
      • GeoNode
  • Tutorials
    • Getting started
    • Build your first use case
    • Stream sliding window quote analytics
    • Advanced tutorials
      • Custom missing value processor
      • Stateless Bollinger band analytics
      • IoT device control
  • FAQ
  • Glossary
  • Components
    • Pipelines
      • Use case anatomy
      • Data priming
        • Types of import
      • Processing unit
      • Group by
      • Emit computed events
      • Telemetry auditing
    • Processors
      • Common attributes
      • Filters
        • By type
        • By expression
        • Send on delta
        • Remove attributes
        • Drop all events
      • Enrichment
        • Key concepts
          • Anatomy of enrichment DSL
          • Banking example
        • Metrics
        • Dynamic contextual data
          • Caching architecture
        • Static contextual data
      • Transformation
        • Field Tokeniser
        • Obfuscation
          • Encryption
          • Masking
          • Bucketing
          • Redaction
      • Triggers
        • Change Data Capture
        • Business rules
      • Stream join
        • Inner stream joins
        • Outer stream joins
        • Join attributes & policy
      • Event tap
        • Anatomy of a Tap
        • SQL Queries
    • Analytics
      • Analytic tools
        • User defined analytics
          • Streaming analytics example
          • User defined analytics
          • User defined scripts
          • User defined functions
            • Average function library
        • Window analytics
          • Tumbling window
          • Sliding window
          • Aggregate functions
        • Analytic functions
          • Stateful
            • Exponential moving average
            • Rolling Sum
          • Stateless
            • Normalisation
              • Absolute max
              • Min max
              • Standardisation
              • Mean
              • Log
              • Z-Score
            • Scaling
              • Unit scale
              • Robust Scale
            • Statistics
              • Statistic summaries
              • Weighted moving average
              • Simple moving average
              • Count
            • General
              • Euclidean
        • Advanced analytics
          • Geospatial
            • Entity geo tracker
            • Geofence occupancy trigger
            • Geo search
            • IP address resolver
            • Reverse geocoding
            • Spatial Index
          • HyperLogLog
          • Distinct counter
      • ML inferencing
        • Feature engineering
          • Scripting
          • Scaling
          • Transform
        • Online predictive analytics
        • Model audit
        • Model management
      • Metrics engine
        • Create metrics
        • Apply metrics
        • Manage metrics
        • Priming metrics
    • Contextual data
      • Architecture
      • Configuration
      • MinIO S3
      • Apache Geode
    • Connectors
      • Sources
        • Kafka
          • Ingestion
        • RabbitMQ
          • Further RabbitMQ configurations
        • MQTT
          • Topic wildcards
          • Session management
          • Last Will and Testament
        • Rest endpoints
        • MinIO S3
        • File watcher
      • Sinks
        • Kafka
        • RabbitMQ
          • Further configurations
        • MQTT
          • Persistent messaging
          • Last Will and Testament
        • SQL databases
        • InfluxDB
        • MongoDB
        • Geode
        • WebSocket endpoint
        • MinIO S3
        • File transport
        • Slack
        • Email
      • Serialisers
        • Serialisation
          • Custom transform example
          • Formatters
        • Deserialisers
          • Custom parsing example
    • Observability
      • Enabling JMX for Joule
      • Meters
      • Metrics API
  • DEVELOPER GUIDES
    • Setting up developer environment
      • Environment setup
      • Build and deploy
      • Install Joule
        • Install Docker demo environment
        • Install with Docker
        • Install from source
        • Install Joule examples
    • Joulectl CLI
    • API Endpoints
      • Mangement API
        • Use case
        • Pipelines
        • Data connectors
        • Contextual data
      • Data access API
        • Query
        • Upload
        • WebSocket
      • SQL support
    • Builder SDK
      • Connector API
        • Sources
          • StreamEventParser API
        • Sinks
          • CustomTransformer API
      • Processor API
      • Analytics API
        • Create custom metrics
        • Define analytics
        • Windows API
        • SQL queries
      • Transformation API
        • Obfuscation API
        • FieldTokenizer API
      • File processing
      • Data types
        • StreamEvent
        • ReferenceDataObject
        • GeoNode
    • System configuration
      • System properties
  • Deployment strategies
    • Deployment Overview
    • Single Node
    • Cluster
    • GuardianDB
    • Packaging
      • Containers
      • Bare metal
  • Product updates
    • Public Roadmap
    • Release Notes
      • v1.2.0 Join Streams with stateful analytics
      • v1.1.0 Streaming analytics enhancements
      • v1.0.4 Predictive stream processing
      • v1.0.3 Contextual SQL based metrics
    • Change history
Powered by GitBook
On this page
  • Development steps
  • Explaining each step
  • Step 1: Register query
  • Step 2 Get metrics

Was this helpful?

  1. DEVELOPER GUIDES
  2. Builder SDK
  3. Analytics API

Create custom metrics

Add pre-computed metrics to custom processors that drive advanced analytic use cases

PreviousAnalytics APINextDefine analytics

Last updated 6 months ago

Was this helpful?

Pre-computed metrics generated by the can be used within a custom processing component. For example, events could be filtered by user-defined metrics using time intervals, scoring models use metrics as part of the input feature space or build KPIs that combine metrics with event data.

Development steps

  1. Register query

  2. Get metrics

Explaining each step

Step 1: Register query

All queries to be executed must be registered, this reduces the overhead of recreating the target SQL query on each function call. The interface elegantly handles duplicate queries by providing the same query token in the form of a UUID.

UUID registerMetricQuery(String metricFamily, String[] metrics, String predicate)
    throws SQLException
Attribute
Description
Example

metricFamily

The metric family this query relates to and belongs to.

metrics

An array of metric names that match the metric table columns.

predicate

A SQL where predicate statement filters required metrics.

Example

// Get an instance of the interface
MetricQueryInterface metricQueryInterface = MetricQueryInterface.getInstance();

// Register the query
var uuidQueryToken = metricQueryInterface.registerMetricQuery(
                                "nasdaq_metrics",
                                new String[]{"avg_bid_min","avg_bid_avg","avg_bid_max"},
                                "WHERE symbol=?"
                                );

The queryToken returned is used as a parameter on the query method. Therefore it is best to be cached as a object class variable.

Step 2 Get metrics

This API provides the ability to query the target metric family for a set of pre-computed metrics. The function returns an Optional object type that is either empty or with a map of metrics with corresponding values.

Optional<Map<String,Object>> query(UUID queryToken, Object[] params) 
        throws SQLException, StreamsException
Attribute
Description
Example

queryToken

The token provided from the query registration process

params

An array of parameters that match the query predicate definition

Example

@Override
public StreamEvent apply(StreamEvent streamEvent, Context context) throws StreamsException {
    metrics.incrementMetric(Metric.RECEIVED);
    if(enabled){
        // TODO: Add processing logic
        var symbol = event.getValue("symbol");
        var spread = calculateSpread(symbol);
        
        // Super simple return value. You could send an indicator to trigger 
        // when spread widens over a threshold for a specific symbol  
        streamEvent.addValue(uuid, "spread", spread);
        metrics.incrementMetric(Metric.PROCESSED);

    } else {
        metrics.incrementMetric(Metric.IGNORED);
    }
    return streamEvent;
}

public double calculateSpread(final String parameter){
    MetricQueryInterface metricQueryInterface = MetricQueryInterface.getInstance();    
    Optional<Map<String, Object>> results =  metricQueryInterface.query(
            uuidQueryToken,
            new Object[]{parameter});
    
    var spread = Double.NaN;
    if (!results.isEmpty()) {
        var metrics = results.get();
        if( results.isPresent()){
          spread = results.get().get("avg_bid_max") - results.get().get("avg_bid_min");
        }
    }
    return spread;
}

"nasdaq_metrics"
new String[]{
"avg_bid_min",
"avg_bid_avg",
"avg_bid_max"}
"WHERE symbol=?"
uuidQueryToken
Object[]{"MSFT")}
Metrics Engine