Joule
  • Welcome to Joule's Docs
  • Why Joule?
    • Joule capabilities
  • What is Joule?
    • Key features
    • The tech stack
  • Use case enablement
    • Use case building framework
  • Concepts
    • Core concepts
    • Low code development
    • Unified execution engine
    • Batch and stream processing
    • Continuous metrics
    • Key Joule data types
      • StreamEvent object
      • Contextual data
      • GeoNode
  • Tutorials
    • Getting started
    • Build your first use case
    • Stream sliding window quote analytics
    • Advanced tutorials
      • Custom missing value processor
      • Stateless Bollinger band analytics
      • IoT device control
  • FAQ
  • Glossary
  • Components
    • Pipelines
      • Use case anatomy
      • Data priming
        • Types of import
      • Processing unit
      • Group by
      • Emit computed events
      • Telemetry auditing
    • Processors
      • Common attributes
      • Filters
        • By type
        • By expression
        • Send on delta
        • Remove attributes
        • Drop all events
      • Enrichment
        • Key concepts
          • Anatomy of enrichment DSL
          • Banking example
        • Metrics
        • Dynamic contextual data
          • Caching architecture
        • Static contextual data
      • Transformation
        • Field Tokeniser
        • Obfuscation
          • Encryption
          • Masking
          • Bucketing
          • Redaction
      • Triggers
        • Change Data Capture
        • Business rules
      • Stream join
        • Inner stream joins
        • Outer stream joins
        • Join attributes & policy
      • Event tap
        • Anatomy of a Tap
        • SQL Queries
    • Analytics
      • Analytic tools
        • User defined analytics
          • Streaming analytics example
          • User defined analytics
          • User defined scripts
          • User defined functions
            • Average function library
        • Window analytics
          • Tumbling window
          • Sliding window
          • Aggregate functions
        • Analytic functions
          • Stateful
            • Exponential moving average
            • Rolling Sum
          • Stateless
            • Normalisation
              • Absolute max
              • Min max
              • Standardisation
              • Mean
              • Log
              • Z-Score
            • Scaling
              • Unit scale
              • Robust Scale
            • Statistics
              • Statistic summaries
              • Weighted moving average
              • Simple moving average
              • Count
            • General
              • Euclidean
        • Advanced analytics
          • Geospatial
            • Entity geo tracker
            • Geofence occupancy trigger
            • Geo search
            • IP address resolver
            • Reverse geocoding
            • Spatial Index
          • HyperLogLog
          • Distinct counter
      • ML inferencing
        • Feature engineering
          • Scripting
          • Scaling
          • Transform
        • Online predictive analytics
        • Model audit
        • Model management
      • Metrics engine
        • Create metrics
        • Apply metrics
        • Manage metrics
        • Priming metrics
    • Contextual data
      • Architecture
      • Configuration
      • MinIO S3
      • Apache Geode
    • Connectors
      • Sources
        • Kafka
          • Ingestion
        • RabbitMQ
          • Further RabbitMQ configurations
        • MQTT
          • Topic wildcards
          • Session management
          • Last Will and Testament
        • Rest endpoints
        • MinIO S3
        • File watcher
      • Sinks
        • Kafka
        • RabbitMQ
          • Further configurations
        • MQTT
          • Persistent messaging
          • Last Will and Testament
        • SQL databases
        • InfluxDB
        • MongoDB
        • Geode
        • WebSocket endpoint
        • MinIO S3
        • File transport
        • Slack
        • Email
      • Serialisers
        • Serialisation
          • Custom transform example
          • Formatters
        • Deserialisers
          • Custom parsing example
    • Observability
      • Enabling JMX for Joule
      • Meters
      • Metrics API
  • DEVELOPER GUIDES
    • Setting up developer environment
      • Environment setup
      • Build and deploy
      • Install Joule
        • Install Docker demo environment
        • Install with Docker
        • Install from source
        • Install Joule examples
    • Joulectl CLI
    • API Endpoints
      • Mangement API
        • Use case
        • Pipelines
        • Data connectors
        • Contextual data
      • Data access API
        • Query
        • Upload
        • WebSocket
      • SQL support
    • Builder SDK
      • Connector API
        • Sources
          • StreamEventParser API
        • Sinks
          • CustomTransformer API
      • Processor API
      • Analytics API
        • Create custom metrics
        • Define analytics
        • Windows API
        • SQL queries
      • Transformation API
        • Obfuscation API
        • FieldTokenizer API
      • File processing
      • Data types
        • StreamEvent
        • ReferenceDataObject
        • GeoNode
    • System configuration
      • System properties
  • Deployment strategies
    • Deployment Overview
    • Single Node
    • Cluster
    • GuardianDB
    • Packaging
      • Containers
      • Bare metal
  • Product updates
    • Public Roadmap
    • Release Notes
      • v1.2.0 Join Streams with stateful analytics
      • v1.1.0 Streaming analytics enhancements
      • v1.0.4 Predictive stream processing
      • v1.0.3 Contextual SQL based metrics
    • Change history
Powered by GitBook
On this page
  • Objective
  • Metrics applications
  • Emit projection
  • Example
  • Query Structure
  • metric-family
  • metrics
  • predicate
  • output alias
  • Examples
  • Query interface

Was this helpful?

  1. Components
  2. Analytics
  3. Metrics engine

Apply metrics

Apply metrics within stream processing functions

Objective

Use calculated metrics within processor logic, analytics, ML inferencing or simply send metrics to connected consumers.

Metrics applications

To access metrics two methods have been provided:

  • Emit projection Metrics can be included within the emit select statement to enhance output events.

  • Query interface Metrics can also be accessed via the Metric Query API for use in custom processors, enhancing the integration of metric data in analytics workflows.

Emit projection

Metrics can be added to the final output event using the emit select statement metrics query syntax.

This section explains how use the metrics query language.

Example

This example will add the avg_bid_max metric to the output event on a successful symbol look up match.

emit:
  select: "symbol, BidMovingAverage.avg_bid_max; WHERE symbol=${symbol} 'avg_bid_max'"

Query Structure

Users define metric queries directly within the select statement, allowing for dynamic lookups based on conditions such as a symbol value.

The query structure is formed of three required components and an optional override output alias.

Required components:

  • metric-family

  • metrics

  • predicate

Optional

  • output-alias

Structure follows a pragmatic form:

<metrics-family>.<metrics>;<predicate> '<output-alias>'

metric-family

This is the logical name of the group of metrics, which should correspond to a metric name declared within the compute section.

metrics

A comma delimited list of metrics or asterisk. Any defined metric needs to correspond the query projection attributes.

predicate

Matching and filtering statement using standard SQL. This is used to extract only those records that fulfils a specified condition.

-- Simple lookup
WHERE symbol='IBM'

-- Parameter replace using the corresponding the event object symbol value
WHERE symbol=${symbol}

-- Apply additonal filtering criteria
WHERE symbol=${symbol} AND avg_bid_max > 120.88

output alias

Use an alias for the output metric rather than the metric name for a single field output.

Examples

-- Get all metrics from the BidMovingAverage metrics family for IBM 
BidMovingAverage.*;WHERE symbol='IBM'

-- Get the avg_bid_max metric from the BidMovingAverage metrics family all symbols matching the reference ${symbol} variable 
BidMovingAverage.avg_bid_max;WHERE symbol=${symbol}

-- Same as above with the ability to define a custom name for the resulting field
BidMovingAverage.avg_bid_max;WHERE symbol=${symbol} 'avg_bid_max'

-- Get the avg_bid_max and avg_bid_min metric from the BidMovingAverage metrics family
BidMovingAverage.avg_bid_max,avg_bid_min;WHERE symbol=${symbol}

Query interface

Metrics can also be accessed via the Metric Query API for use in custom processors, enhancing the integration of metric data in analytics workflows.

PreviousCreate metricsNextManage metrics

Last updated 6 months ago

Was this helpful?

Find further information on how to leverage the value through the

API documentation