Joule
  • Welcome to Joule's Docs
  • Why Joule?
    • Joule capabilities
  • What is Joule?
    • Key features
    • The tech stack
  • Use case enablement
    • Use case building framework
  • Concepts
    • Core concepts
    • Low code development
    • Unified execution engine
    • Batch and stream processing
    • Continuous metrics
    • Key Joule data types
      • StreamEvent object
      • Contextual data
      • GeoNode
  • Tutorials
    • Getting started
    • Build your first use case
    • Stream sliding window quote analytics
    • Advanced tutorials
      • Custom missing value processor
      • Stateless Bollinger band analytics
      • IoT device control
  • FAQ
  • Glossary
  • Components
    • Pipelines
      • Use case anatomy
      • Data priming
        • Types of import
      • Processing unit
      • Group by
      • Emit computed events
      • Telemetry auditing
    • Processors
      • Common attributes
      • Filters
        • By type
        • By expression
        • Send on delta
        • Remove attributes
        • Drop all events
      • Enrichment
        • Key concepts
          • Anatomy of enrichment DSL
          • Banking example
        • Metrics
        • Dynamic contextual data
          • Caching architecture
        • Static contextual data
      • Transformation
        • Field Tokeniser
        • Obfuscation
          • Encryption
          • Masking
          • Bucketing
          • Redaction
      • Triggers
        • Change Data Capture
        • Business rules
      • Stream join
        • Inner stream joins
        • Outer stream joins
        • Join attributes & policy
      • Event tap
        • Anatomy of a Tap
        • SQL Queries
    • Analytics
      • Analytic tools
        • User defined analytics
          • Streaming analytics example
          • User defined analytics
          • User defined scripts
          • User defined functions
            • Average function library
        • Window analytics
          • Tumbling window
          • Sliding window
          • Aggregate functions
        • Analytic functions
          • Stateful
            • Exponential moving average
            • Rolling Sum
          • Stateless
            • Normalisation
              • Absolute max
              • Min max
              • Standardisation
              • Mean
              • Log
              • Z-Score
            • Scaling
              • Unit scale
              • Robust Scale
            • Statistics
              • Statistic summaries
              • Weighted moving average
              • Simple moving average
              • Count
            • General
              • Euclidean
        • Advanced analytics
          • Geospatial
            • Entity geo tracker
            • Geofence occupancy trigger
            • Geo search
            • IP address resolver
            • Reverse geocoding
            • Spatial Index
          • HyperLogLog
          • Distinct counter
      • ML inferencing
        • Feature engineering
          • Scripting
          • Scaling
          • Transform
        • Online predictive analytics
        • Model audit
        • Model management
      • Metrics engine
        • Create metrics
        • Apply metrics
        • Manage metrics
        • Priming metrics
    • Contextual data
      • Architecture
      • Configuration
      • MinIO S3
      • Apache Geode
    • Connectors
      • Sources
        • Kafka
          • Ingestion
        • RabbitMQ
          • Further RabbitMQ configurations
        • MQTT
          • Topic wildcards
          • Session management
          • Last Will and Testament
        • Rest endpoints
        • MinIO S3
        • File watcher
      • Sinks
        • Kafka
        • RabbitMQ
          • Further configurations
        • MQTT
          • Persistent messaging
          • Last Will and Testament
        • SQL databases
        • InfluxDB
        • MongoDB
        • Geode
        • WebSocket endpoint
        • MinIO S3
        • File transport
        • Slack
        • Email
      • Serialisers
        • Serialisation
          • Custom transform example
          • Formatters
        • Deserialisers
          • Custom parsing example
    • Observability
      • Enabling JMX for Joule
      • Meters
      • Metrics API
  • DEVELOPER GUIDES
    • Setting up developer environment
      • Environment setup
      • Build and deploy
      • Install Joule
        • Install Docker demo environment
        • Install with Docker
        • Install from source
        • Install Joule examples
    • Joulectl CLI
    • API Endpoints
      • Mangement API
        • Use case
        • Pipelines
        • Data connectors
        • Contextual data
      • Data access API
        • Query
        • Upload
        • WebSocket
      • SQL support
    • Builder SDK
      • Connector API
        • Sources
          • StreamEventParser API
        • Sinks
          • CustomTransformer API
      • Processor API
      • Analytics API
        • Create custom metrics
        • Define analytics
        • Windows API
        • SQL queries
      • Transformation API
        • Obfuscation API
        • FieldTokenizer API
      • File processing
      • Data types
        • StreamEvent
        • ReferenceDataObject
        • GeoNode
    • System configuration
      • System properties
  • Deployment strategies
    • Deployment Overview
    • Single Node
    • Cluster
    • GuardianDB
    • Packaging
      • Containers
      • Bare metal
  • Product updates
    • Public Roadmap
    • Release Notes
      • v1.2.0 Join Streams with stateful analytics
      • v1.1.0 Streaming analytics enhancements
      • v1.0.4 Predictive stream processing
      • v1.0.3 Contextual SQL based metrics
    • Change history
Powered by GitBook
On this page
  • Objective
  • Log transform
  • Example
  • Attributes schema
  • Day of week transform
  • Example
  • Attributes schema
  • Day binning
  • Example
  • Attributes schema
  • Age binning
  • Example
  • Attributes schema

Was this helpful?

  1. Components
  2. Analytics
  3. ML inferencing
  4. Feature engineering

Transform

Generate analytics-ready features from data

PreviousScalingNextOnline predictive analytics

Last updated 6 months ago

Was this helpful?

Objective

Feature engineering prepares raw data for analysis by creating new, insightful features:

  1. Applies a log function to positive values, commonly used to handle skewed data.

  2. Converts a date to its day of the week as a number (1-7).

  3. Categorises a date as a weekday (1) or weekend (2).

  4. Categorises ages into specified age ranges for easier analysis.

Each method produces targeted features, simplifying data for analytics.

Log transform

Log transformation is a data transformation method in which it replaces each variable x with a log(x) where x is a positive number and greater than zero

Example

feature engineering:
  ...
  features:
    compute:
      log_spend:
        function:
          log transform:
            source field: spend

Attributes schema

Attribute
Description
Type
Required

source field

The column to perform the calculation upon

Double

Day of week transform

Provide the day of week from the passed date object to a number between 1 and 7, where start of week is Monday = 1.

Supported date objects:

  1. java.time.LocalDate

  2. java.sql.Date

  3. org.joda.time.DateTime

Example

feature engineering:
  ...
  features:
    compute:
      day_of_week:
        function:
          day-of-week transform:
            source field: date

Attributes schema

Attribute
Description
Type
Required

source field

The column to perform the calculation upon

Double

Day binning

Categorise a day into one of two categories following the Gregorian calendar.

  1. Weekday (Mon-Fri) = 1

  2. Weekends (Sat-Sun) = 2

Example

feature engineering:
  ...
  features:
    compute:
      day_bin:
        function:
          day binning:
            source field: date

Attributes schema

Attribute
Description
Type
Required

source field

The column to perform the calculation upon

Double

Age binning

Categorise a passed age in a pre-configured age bin as either an integer or date object.

Example

feature engineering:
  ...
  features:
    compute:
        age_bin:
          function:
            age binning:
              bins: [ [0,18], [19,21], [22, 40], [41, 55], [56,76]]
              base date: 2023-01-01
              source field: current_age

Attributes schema

Attribute
Description
Type
Required

bins

Array of age bins to use. Default bins are set to 0-9, 10-19,...110-119

Int[][]

as date

Passed event field is a supported date object

Supported Data classes:

  • java.time.LocalDate

  • java.sql.Date

Boolean

Default: false

base date

Provide a date which is used to calculate the age. Default set to the date process is started

String

Format: YYYY-MM-DD

source field

The column to perform the calculation upon

Double

Log transform
Day of week transform
Day binning
Age binning