Joule
  • Welcome to Joule's Docs
  • Why Joule?
    • Joule capabilities
  • What is Joule?
    • Key features
    • The tech stack
  • Use case enablement
    • Use case building framework
  • Concepts
    • Core concepts
    • Low code development
    • Unified execution engine
    • Batch and stream processing
    • Continuous metrics
    • Key Joule data types
      • StreamEvent object
      • Contextual data
      • GeoNode
  • Tutorials
    • Getting started
    • Build your first use case
    • Stream sliding window quote analytics
    • Advanced tutorials
      • Custom missing value processor
      • Stateless Bollinger band analytics
      • IoT device control
  • FAQ
  • Glossary
  • Components
    • Pipelines
      • Use case anatomy
      • Data priming
        • Types of import
      • Processing unit
      • Group by
      • Emit computed events
      • Telemetry auditing
    • Processors
      • Common attributes
      • Filters
        • By type
        • By expression
        • Send on delta
        • Remove attributes
        • Drop all events
      • Enrichment
        • Key concepts
          • Anatomy of enrichment DSL
          • Banking example
        • Metrics
        • Dynamic contextual data
          • Caching architecture
        • Static contextual data
      • Transformation
        • Field Tokeniser
        • Obfuscation
          • Encryption
          • Masking
          • Bucketing
          • Redaction
      • Triggers
        • Change Data Capture
        • Business rules
      • Stream join
        • Inner stream joins
        • Outer stream joins
        • Join attributes & policy
      • Event tap
        • Anatomy of a Tap
        • SQL Queries
    • Analytics
      • Analytic tools
        • User defined analytics
          • Streaming analytics example
          • User defined analytics
          • User defined scripts
          • User defined functions
            • Average function library
        • Window analytics
          • Tumbling window
          • Sliding window
          • Aggregate functions
        • Analytic functions
          • Stateful
            • Exponential moving average
            • Rolling Sum
          • Stateless
            • Normalisation
              • Absolute max
              • Min max
              • Standardisation
              • Mean
              • Log
              • Z-Score
            • Scaling
              • Unit scale
              • Robust Scale
            • Statistics
              • Statistic summaries
              • Weighted moving average
              • Simple moving average
              • Count
            • General
              • Euclidean
        • Advanced analytics
          • Geospatial
            • Entity geo tracker
            • Geofence occupancy trigger
            • Geo search
            • IP address resolver
            • Reverse geocoding
            • Spatial Index
          • HyperLogLog
          • Distinct counter
      • ML inferencing
        • Feature engineering
          • Scripting
          • Scaling
          • Transform
        • Online predictive analytics
        • Model audit
        • Model management
      • Metrics engine
        • Create metrics
        • Apply metrics
        • Manage metrics
        • Priming metrics
    • Contextual data
      • Architecture
      • Configuration
      • MinIO S3
      • Apache Geode
    • Connectors
      • Sources
        • Kafka
          • Ingestion
        • RabbitMQ
          • Further RabbitMQ configurations
        • MQTT
          • Topic wildcards
          • Session management
          • Last Will and Testament
        • Rest endpoints
        • MinIO S3
        • File watcher
      • Sinks
        • Kafka
        • RabbitMQ
          • Further configurations
        • MQTT
          • Persistent messaging
          • Last Will and Testament
        • SQL databases
        • InfluxDB
        • MongoDB
        • Geode
        • WebSocket endpoint
        • MinIO S3
        • File transport
        • Slack
        • Email
      • Serialisers
        • Serialisation
          • Custom transform example
          • Formatters
        • Deserialisers
          • Custom parsing example
    • Observability
      • Enabling JMX for Joule
      • Meters
      • Metrics API
  • DEVELOPER GUIDES
    • Setting up developer environment
      • Environment setup
      • Build and deploy
      • Install Joule
        • Install Docker demo environment
        • Install with Docker
        • Install from source
        • Install Joule examples
    • Joulectl CLI
    • API Endpoints
      • Mangement API
        • Use case
        • Pipelines
        • Data connectors
        • Contextual data
      • Data access API
        • Query
        • Upload
        • WebSocket
      • SQL support
    • Builder SDK
      • Connector API
        • Sources
          • StreamEventParser API
        • Sinks
          • CustomTransformer API
      • Processor API
      • Analytics API
        • Create custom metrics
        • Define analytics
        • Windows API
        • SQL queries
      • Transformation API
        • Obfuscation API
        • FieldTokenizer API
      • File processing
      • Data types
        • StreamEvent
        • ReferenceDataObject
        • GeoNode
    • System configuration
      • System properties
  • Deployment strategies
    • Deployment Overview
    • Single Node
    • Cluster
    • GuardianDB
    • Packaging
      • Containers
      • Bare metal
  • Product updates
    • Public Roadmap
    • Release Notes
      • v1.2.0 Join Streams with stateful analytics
      • v1.1.0 Streaming analytics enhancements
      • v1.0.4 Predictive stream processing
      • v1.0.3 Contextual SQL based metrics
    • Change history
Powered by GitBook
On this page
  • Overview
  • Initialisation process
  • Examples & DSL attributes
  • Attributes schema
  • Index

Was this helpful?

  1. Components
  2. Pipelines

Data priming

Prime Joule with necessary startup data

PreviousUse case anatomyNextTypes of import

Last updated 6 months ago

Was this helpful?

This is an optional feature that provides the ability to prime Joule with data necessary for an active use case

Overview

Advanced use cases often require contextual data to support calculations or complex business logic. Joule enables this by offering data priming at initialisation and enrichment processing stages.

The initialisation process imports data at startup from local files into an in-memory SQL database, making it immediately available for use in processing.

To see what formats can be imported, see the page.

Initialisation process

Joule’s initialisation process leverages an embedded SQL engine, enabling powerful features like , event capturing, data exporting and access to data.

This imported data, typically static contextual information, plays a vital role in supporting key functions within the event stream pipeline.

Data made available through the initialisation process can be accessed through several main components:

  1. For adding contextual information to events.

  2. For real-time calculations and metrics updates.

  3. Select projection For choosing specific fields for further processing.

  4. In-memory SQL API For direct data access and manipulation within Joule.

Attribute
Description
Data Type
Required

schema

Global database schema when set can be used for any import definition where schema is not defined. Default schema reference_data

String

parquet

List of parquet data import configurations

csv

List of CSV data import configurations

Examples & DSL attributes

This following example demonstrates how to initialise two separate data files into independent in-memory SQL database tables using CSV and Parquet formats.

  1. The CSV file contains Nasdaq company information, it is treated as static reference data and is therefore stored in the reference_data schema.

  2. Meanwhile, the Parquet file loads pre-calculated metrics, priming the metrics engine within the metrics schema.

This setup enables efficient access to contextual data and metrics calculations during event processing.

This feature can load and read files from existing databases!

stream:
  ...
  initialisation:
    data import:
      csv:
        - schema: reference_data
          table: nasdaq_companies
          file: 'data/csv/nasdaq.csv'
          drop table: true
          index:
            fields: [ 'Symbol' ]
            unique: true
  
      parquet:
        - schema: metrics
          table: bid_moving_averages      
          files: ['data/parquet/mvavgs-prime.parquet']
          drop table: true
          index:
            fields: [ 'symbol' ]
            unique: false

Attributes schema

These are common DSL keywords used in both parquet and CSV importing methods.

Attribute
Description
Data Type
Required

schema

Database schema to create and apply table import function

String

table

Target table to import data into

String

drop table

Drop existing table before

import. This will cause a table recreation

Boolean Default true

index

Create an index on the created table

Index

If this optional field is supplied the index is recreated once the data has been imported.

Attribute
Description
Data Type
Required

fields

A list of table fields to base index on

String

unique

True for a unique index

Boolean

Default true

Types of imports
metrics
contextual
Enricher processor
Metrics engine
See next
See parquet attributes
See CSV attributes