Joule
  • Welcome to Joule's Docs
  • Why Joule?
    • Joule capabilities
  • What is Joule?
    • Key features
    • The tech stack
  • Use case enablement
    • Use case building framework
  • Concepts
    • Core concepts
    • Low code development
    • Unified execution engine
    • Batch and stream processing
    • Continuous metrics
    • Key Joule data types
      • StreamEvent object
      • Contextual data
      • GeoNode
  • Tutorials
    • Getting started
    • Build your first use case
    • Stream sliding window quote analytics
    • Advanced tutorials
      • Custom missing value processor
      • Stateless Bollinger band analytics
      • IoT device control
  • FAQ
  • Glossary
  • Components
    • Pipelines
      • Use case anatomy
      • Data priming
        • Types of import
      • Processing unit
      • Group by
      • Emit computed events
      • Telemetry auditing
    • Processors
      • Common attributes
      • Filters
        • By type
        • By expression
        • Send on delta
        • Remove attributes
        • Drop all events
      • Enrichment
        • Key concepts
          • Anatomy of enrichment DSL
          • Banking example
        • Metrics
        • Dynamic contextual data
          • Caching architecture
        • Static contextual data
      • Transformation
        • Field Tokeniser
        • Obfuscation
          • Encryption
          • Masking
          • Bucketing
          • Redaction
      • Triggers
        • Change Data Capture
        • Business rules
      • Stream join
        • Inner stream joins
        • Outer stream joins
        • Join attributes & policy
      • Event tap
        • Anatomy of a Tap
        • SQL Queries
    • Analytics
      • Analytic tools
        • User defined analytics
          • Streaming analytics example
          • User defined analytics
          • User defined scripts
          • User defined functions
            • Average function library
        • Window analytics
          • Tumbling window
          • Sliding window
          • Aggregate functions
        • Analytic functions
          • Stateful
            • Exponential moving average
            • Rolling Sum
          • Stateless
            • Normalisation
              • Absolute max
              • Min max
              • Standardisation
              • Mean
              • Log
              • Z-Score
            • Scaling
              • Unit scale
              • Robust Scale
            • Statistics
              • Statistic summaries
              • Weighted moving average
              • Simple moving average
              • Count
            • General
              • Euclidean
        • Advanced analytics
          • Geospatial
            • Entity geo tracker
            • Geofence occupancy trigger
            • Geo search
            • IP address resolver
            • Reverse geocoding
            • Spatial Index
          • HyperLogLog
          • Distinct counter
      • ML inferencing
        • Feature engineering
          • Scripting
          • Scaling
          • Transform
        • Online predictive analytics
        • Model audit
        • Model management
      • Metrics engine
        • Create metrics
        • Apply metrics
        • Manage metrics
        • Priming metrics
    • Contextual data
      • Architecture
      • Configuration
      • MinIO S3
      • Apache Geode
    • Connectors
      • Sources
        • Kafka
          • Ingestion
        • RabbitMQ
          • Further RabbitMQ configurations
        • MQTT
          • Topic wildcards
          • Session management
          • Last Will and Testament
        • Rest endpoints
        • MinIO S3
        • File watcher
      • Sinks
        • Kafka
        • RabbitMQ
          • Further configurations
        • MQTT
          • Persistent messaging
          • Last Will and Testament
        • SQL databases
        • InfluxDB
        • MongoDB
        • Geode
        • WebSocket endpoint
        • MinIO S3
        • File transport
        • Slack
        • Email
      • Serialisers
        • Serialisation
          • Custom transform example
          • Formatters
        • Deserialisers
          • Custom parsing example
    • Observability
      • Enabling JMX for Joule
      • Meters
      • Metrics API
  • DEVELOPER GUIDES
    • Setting up developer environment
      • Environment setup
      • Build and deploy
      • Install Joule
        • Install Docker demo environment
        • Install with Docker
        • Install from source
        • Install Joule examples
    • Joulectl CLI
    • API Endpoints
      • Mangement API
        • Use case
        • Pipelines
        • Data connectors
        • Contextual data
      • Data access API
        • Query
        • Upload
        • WebSocket
      • SQL support
    • Builder SDK
      • Connector API
        • Sources
          • StreamEventParser API
        • Sinks
          • CustomTransformer API
      • Processor API
      • Analytics API
        • Create custom metrics
        • Define analytics
        • Windows API
        • SQL queries
      • Transformation API
        • Obfuscation API
        • FieldTokenizer API
      • File processing
      • Data types
        • StreamEvent
        • ReferenceDataObject
        • GeoNode
    • System configuration
      • System properties
  • Deployment strategies
    • Deployment Overview
    • Single Node
    • Cluster
    • Packaging
      • Containers
      • Bare metal
  • Product updates
    • Public Roadmap
    • Release Notes
      • v1.2.0 Join Streams with stateful analytics
      • v1.1.0 Streaming analytics enhancements
      • v1.0.4 Predictive stream processing
      • v1.0.3 Contextual SQL based metrics
    • Change history
Powered by GitBook
On this page
  • Use case configuration
  • Pipeline configuration
  • Select statement

Was this helpful?

  1. Use case examples
  2. Telco

Basic analytics

SQL analytics is an accepted standard for all enterprise platforms. Joule has various analytics function point to address this requirement one being within the SELECT statement


This example demostrates a basic select aggregate ratio function based upon IMSI and celltower within the select statement.

Use case configuration

File: app-geospatialMarketingCampaign.env

SOURCEFILE=conf/sources/mobileSimulatedStream.yaml
REFERENCEDATA=conf/sources/mobileReferenceData.yaml
ENGINEFILE=conf/usecases/analytics/mobileEventBasicAnalyticsFunctions.yaml
PUBLISHFILE=conf/publishers/enrichedEventsInfluxdb.yaml

Reference data stores can be used to prime the geofences. Change the required yaml file to test this feature in the app.env file.

ENGINEFILE=conf/usecases/analytics/mobileReferenceData.yaml

Pipeline configuration

processing unit:
  pipeline:
    - tokenizer enricher:
        tokenizers:
          imei : com.fractalworks.streams.examples.telco.enricher.IMEIDecoder
          latlng: com.fractalworks.streams.examples.telco.enricher.LatitudeLongitudeDecoder

    - obfuscation:
        name: piiMasking
        enabled: true
        cloneEvent: false
        fields:
          imsi:
            encryption:
              decrypt: false
              key location: ./keytmp
              aes bit length: 128
              rsa bit length: 2048
              rotate keys: true

    - enricher:
        enrich:
          deviceType:
            key: device
            using: deviceStore

          bundles:
            key: dataBundle
            using: dataBundleStore

        stores:
          dataBundleStore:
            storeName: bundles
            primaryKey: bundleid
            primaryKeyType: java.lang.Integer
            queryByKey: true

          deviceStore:
            storeName: mobiledevices
            primaryKey: tac
            primaryKeyType: java.lang.String

select:
  expression: "imsi, device.manufacturer, device.model, bytesUp, bytesDown, 'byteRatio' bytesUp / bytesDown, celltower, droppedCall, latitude, longitude"

group by:
  - imsi
  - celltower

Select statement

select:
    expression: "imsi, 
                 device.manufacturer, 
                 device.model, 
                 bytesUp, 
                 bytesDown, 
                 'byteRatio' bytesUp / bytesDown, 
                 celltower, 
                 droppedCall, 
                 latitude, 
                 longitude"

Last updated 1 year ago

Was this helpful?

📱